Импульсный бп. Как сделать импульсный блок питания своими руками. Как работает импульсный блок питания

Импульсные блоки питания на 12В сегодня все чаще применяются в быту. С их помощью заряжаются различные виды аккумуляторных батарей, реализуются некоторые виды освещения, даже бесперебойное электрическое питания для компьютерных и других сетей. Конечно, самый простой способ обзавестись необходимым импульсным блоком питания – это купить его в магазине. К примеру, импульсный блок питания на tl494.

Но нас интересует возможность собрать этот прибор своими руками. Итак, импульсный блок питания – схема, детализация и рекомендации по его сборке.

Если рассматривать структурную схему, то состоит она из четырех элементов:

  • Сетевой выпрямитель.
  • Выпрямитель напряжения.
  • Система управления.

Структура блока питания показана на нижнем рисунке.


Итак, какие функции выполняет каждый из этих элементов. Сетевой выпрямитель преобразует переменный ток в постоянный. То есть, происходит сглаживание пульсации напряжения. Высокочастотный преобразователь, наоборот, преобразует постоянное напряжение в переменное. При этом форма импульсов становится, во-первых, прямоугольной, во-вторых, с необходимой амплитудой.

Выпрямитель напряжения частично сглаживает напряжение. Кстати, в некоторых блоках питания этот элемент отсутствует, электрический ток поступает сразу на сглаживающий фильтр, который своим выходом соединяется с нагрузкой. На схеме показано, что система управления связана и с высокочастотным преобразователем, и с выпрямителем напряжения. Все дело в том, что управление ВЧП происходит за счет обратной связи с выпрямителем.

Эта структурная схема простого импульсного блока питания на 12В, кстати, имеет большое количество критиков, которые уверяют, что коэффициент полезного ее действия достаточно мал. В принципе, так оно и есть, но если правильно подойти к подбору всех элементов, если правильно провести расчеты, то импульсные блоки питания этого типа будут обладать КПД не ниже 90%. А это уже кое-что, да и значит.


Принципиальные схемы

Итак, в основе сборки импульсного блока питания лежит не только принципиальная схема, а точнее, ее обоснованный выбор, но и выбор ее основных элементов. В принципе, в данном случае необходимо точно подобрать два элемента:

  • Выпрямитель напряжения.

О них и пойдет речь.

По сути, это длинное название можно заменить коротким – инвертор. Он бывает одно- или двухтактным, в котором используется импульсный трансформатор. Вот несколько схем этого элемента:


Схема высокочастотного преобразователя

Самая простая схема, в которой установлен только трансформатор, однотактная (первая позиция). Именно простота создает некоторые недостатки:

  • Необходима установка трансформатора большого размера, потому что этот прибор действует по частной петле гистерезиса.
  • Чтобы мощность тока на выходе была большой, надо увеличить его импульсную амплитуду.

Поэтому данная схема чаще всего применяется в блоках питания для маломощных приборов, где влияние этих недостатков не будет сказываться на работе самого прибора.

Вторая позиция – это схема двухтактная, которая носит название пушпульная. Здесь нет недостатков однотактной, но и у нее есть свои минусы: повышенные требования к максимальному значению напряжения ключей и более сложная конструкция самого трансформатора.


Третья позиция – двухтактная полумостовая. По сути, это предыдущая модель только с упрощенным трансформатором. Именно этот критерий стал основой импульсных источников питания, которые используются для электрических приборов мощностью не больше 3 кВт.

Четвертая позиция – мостовой импульсный блок питания. В нем увеличено количество силовых ключей в два раза, что дает возможность увеличить мощность. А этой выгодно и с технической точки зрения, и с экономической.

Выбор трансформатора

Импульсный блок питания, а точнее сказать, его мощность, будет зависеть от выбранного вида трансформаторного сердечника. Для источников питания до 1 кВт устанавливается трансформатор с ферритовым сердечником.

Внимание! Необходимо помнить, что в трансформаторах с ферритовым сердечником происходят большие потери напряжения, если его частота будет приближаться к 100 Гц.

Выпрямитель напряжения

Существует три основные схемы выпрямления напряжения номиналом 220 вольт.

  • Однополупериодная.
  • Двухполупериодная.
  • Нулевая или, как и предыдущая, только со средней точкой.

Первая схема самая простая, в которой используется минимальное количество полупроводниковых элементов. Единственный ее минус – это высокая пульсация напряжения на выходе. Хотя можно было бы добавить и небольшой коэффициент выпрямления (0,45), поэтому, используя эту схему, придется устанавливать мощный фильтр.

Нулевая является обладателем высокого коэффициента выпрямления – 0,9. Правда, при этом необходимо увеличить число диодов выпрямления практически в два раза. Недостаток – наличие сетевого трансформатора. То есть, его габаритные размеры мало связаны с понятием малогабаритных приборов, тем более, когда это касается импульсного блока питания.

Третья позиция – это одно и то же, что и вторая, только без трансформатора. Его заменяет емкостной фильтр, который имеет свой недостаток – это высокий импульс выходного тока. Правда, данный недостаток не критичен.


Заключение по теме

Как видите, принципиальная схема для импульсных блоков питания имеет несколько разновидностей. Но чтобы каждая из них работала корректно, необходимо правильно подобрать ее составляющие. Конечно, все это не так просто как может показаться на первый взгляд, но если принять во внимание наши рекомендации, то можно самостоятельно собрать небольшой мощности блок, к примеру, для освещения помещений LED-лампами.


Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…

Для этого создаются дополнительные элементы: , преобразующие напряжение одного вида в другой. Они могут быть:

    встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;

    или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.

В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:

1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;

2. импульсных блоках питания.

Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.

Трансформаторные блоки питания

Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.

После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.

За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.

Импульсные блоки питания (ИБП)

Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:

    доступностью комплектования распространенной элементной базой;

    надежностью в исполнении;

    возможностями расширения рабочего диапазона выходных напряжений.

Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.

В состав основных деталей источников питания входят:

    сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;

    накопительная фильтрующая емкость;

    ключевой силовой транзистор;

    задающий генератор;

    схема обратной связи, выполненная на транзисторах;

    оптопара;

    импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;

    выпрямительные диоды выходной схемы;

    цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;

    фильтрующие конденсаторы;

    силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;

    выходные разъемы.

Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.

Как работает импульсный блок питания

Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.

Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.

РАДИОпитание

Импульсный БЛОК ПИТАНИЯ

Основная задача - немного систематизировать разрозненные знания и материалы, собрав их в одном месте под единым заголовком. Информация не для спецов, а для тех, кто хочет понять основы принципа действия импульсных блоков питания и немного разобраться в том, как они устроены.

Используемые сокращения: БП – блок питания (радиоэлектронной аппаратуры); ТЭРЦ – теория электро-радио цепей; НСБП – нестабилизированный БП; Uвых – выходное напряжение; СБП – стабилизированный БП; ИБП – импульсный БП; КПД – коэффициент полезного действия: БППТ – блок питания переменного тока; ЗУ – зарядные устройства; КЗ – короткое замыкание; СВ – сетевой выпрямитель; СФ – сетевой фильтр; ВЧП – высокочастотный преобразователь; ШИМ – широтно-импульсная модуляция; const–постоянная величина.

1. Классификация БП:

1.1. Нестабилизированные БП;
1.2. Стабилизированные БП;
1.3. Импульсные БП;
1.4. БП переменного тока.

2. Сравнительный анализ:

2.1. Структура трансформаторного БП;
2.2. Преимущества и недостатки трансформаторных БП;
2.3. Структура ИБП;
2.4. Преимущества и недостатки ИБП.

3. Схемные решения отдельных элементов ИБП:

3.1. СВи фильтр;
3.2. ВПЧ (ключевой элемент с импульсным трансформатором);
3.3. ШИМ-контроллер и обратная связь.

4. Схемы разных ИБП.
5. Реальный ИБП.
6. ПростейшийИБП – своими руками.

1. Классификация БП
В соответствии с дисциплиной ТЭРЦ (которую я изучал довольно давно), классификация БП предусматривает следующие группы:
1.1. НСБП – это самые распространенные трансформаторные блоки питания. Обеспечивают выходное напряжение постоянного тока. Такой БП обычно содержит сетевой трансформатор и выпрямитель. В НСБП выходное напряжение соответствует номинальному только при номинальном сетевом напряжении и номинальном токе нагрузки. Эти БП пригодны для питания осветительных и нагревательных приборов, электромоторов и любых устройств со встроенным стабилизатором напряжения (например, большинство радиотелефонов и автоответчиков). Они имеют значительный уровень пульсаций Uвыхи не пригодны для питания звуковой техники (радиоприемников, плееров, музыкальных синтезаторов).
1.2. СБП обеспечивают, ясен пень, стабилизированноеUвых постоянного тока. Такой БП обычно содержит сетевой трансформатор, выпрямитель и стабилизатор. Uвых не зависит (или почти не зависит) от изменения сетевого напряжения (в разумных пределах) и от изменения тока нагрузки. В СБП Uвых будет почти одинаковым как на холостом ходу, так и при номинальной нагрузке. Кроме того, для них характерны достаточно малые пульсации напряжения переменного тока на выходе. СБП практически всегда может заменить НСБП. СБП могут не иметь трансформатора.
1.3. ИБП обеспечивают на выходе стабилизированное напряжение постоянного тока. Они имеют следующие преимущества по сравнению с трансформаторными (такими могут быть ЭП первых двух групп): высокий КПД, незначительный нагрев, малый вес и габариты, большой допустимый диапазон сетевого напряжения. Обычно имеется встроенная защита от перегрузки и замыканий на выходе. Важнейшими элементами ИБП являются ключ - устройство, способное за короткое время изменить сопротивление прохождению тока с минимального на максимальное, и наоборот, и интегратор, напряжение на котором не может измениться мгновенно, а плавно растёт по мере накопления им энергии и так же плавно падает по мере отдачи её в нагрузку. Преимущества ИБП растут с увеличением мощности, т.е. для самой маломощной бытовой аппаратуры их применение может быть экономически не оправдано, а блоки питания мощностью от 50 Вт уже существенно дешевле в импульсном варианте. ИБП схемотехнически сложнее трансформаторных.
1.4. БППТ (включая автотрансформаторы) – применяются для питания осветительных и нагревательных электроприборов, а также для тех бытовых приборов, которые содержат внутренний выпрямитель и стабилизатор напряжения (например многие радиотелефоны Siemens, Toshiba, ряд автоответчиков).
1.5. ЗУ – это устройства, предназначенные исключительно для заряда аккумуляторов различных типов. При этом аккумуляторы могут в процессе заряда располагаться как внутри зарядного устройства, так и снаружи. Однако, например, сетевые адаптеры для радиотелефонов, принято относить к БП, т.к., во-первых, аккумуляторы при этом подключаются к устройству заряда не напрямую, а через внутреннюю схему, а во-вторых, кроме заряда аккумуляторов такой блок питания, как правило, обеспечивает и работу от сети.

2. Сравнительный анализ .
Рассмотрим два основных типа БП –трансформаторные (1.1.-1.2.) и импульсные (1.3.). Каждый из них имеет как свои преимущества, так и свои недостатки. Поэтому нельзя точно сказать, какой лучше или хуже, просто каждый тип БП может в бо льшей степени подходить для тех или иных устройств, в зависимости от своих технических характеристик.

2.1. Структурная схема трансформаторного БП.

Если рассмотреть трансформаторный БП (их также называют аналоговыми, линейными, параметрическими), то он состоит из понижающего трансформатора 1 , где первичная обмотка выполнена из расчета на сетевое напряжение. Этот трансформатор часто называют силовым, и он служит одновременно для гальванической развязки. Преобразование переменного напряжения в пульсирующее однонаправленное (постоянное) напряжение происходит с помощью выпрямителя 2 на полупроводниковых диодах, мостах, сборках. Емкостной фильтр 3 сглаживает пульсирующее напряжение (часто для этого используется конденсатор большо й емкости). Кроме этого, в схеме трансформаторного БП может присутствоватьстабилизатор 4 иэлементы защиты от КЗ в нагрузке.
2.2. Преимущества и недостатки трансформаторного БП
Преимущества трансформаторного БП: высокая надежность, простота конструкции, доступность элементной базы, а также низкий уровень создаваемых помех.
Недостатки трансформаторного БП: большие габариты и вес, металлоемкость и низкий КПД (до 50% в лучшем случае!).
Подробнее о таких БП см. в моей статье "Блоки питания" в этом же разделе.
2.3. Структурная схема импульсного БП.


В ИБП входящее переменное напряжение сети сначала выпрямляется полупроводниковым диодами 1 (сборками, мостами), затем емкостной фильтр 2 сглаживает пульсирующее напряжение. Электронный ключ 3 является элементом генератора, вырабатывающего прямоугольные импульсы высокой частоты, которые поступают на импульсный трансформатор 4 , который служит одновременно гальванической развязкой. Таким образом, в ИБП снова создаётся переменный ток. На выходе снова стоят выпрямитель 1 и фильтр 2 . Для того, чтобы стабилизировать Uвых, в ИБП используется обратная связь 5 . Это позволяет удерживать Uвых на относительно постоянном уровне. Управление электронным ключом 3 происходит через ШИМ-контроллер 6 . Благодаря такому способу управления Uвых не зависит от возможных колебаний входного (сетевого) напряжения, а также от величины нагрузки.

2.4. Преимущества и недостатки ИБП
Преимущества ИБП: небольшие габариты и вес, широкий диапазон входного напряжения и частоты, высокий КПД (более 90%) и, по сравнению с трансформаторными БП, меньшая стоимость, если брать современную элементную базу. Также к их достоинствам относится и то, что в большинстве современных ИБП присутствуют встроенные цепи защиты от отсутствия нагрузки на выходе и от короткого замыкания.
Высокий КПД ИБП связан с особенностью схемотехники. Основные потери в аналоговом БП – это силовой трансформатор и аналоговый стабилизатор (регулятор). В ИБП нет ни того, ни другого. Вместо сетевого трансформатора используется высокочастотный, а вместо стабилизатора – ключевой элемент. Поскольку основную часть времени ключевые элементы либо включены, либо выключены, потери энергии в импульсном блоке питания минимальны.
Недостатки ИБП: все они представляют собой источник высокочастотных помех, что непосредственно связано с их принципом работы, а также то, что основная часть схемы работает без гальванической развязки от входящего напряжения.

3. Схемные решения отдельных элементов ИБП.
3.1. СВ и фильтр
Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем:


Каждой из них присущи достоинства и недостатки, которые определяют область применения.
Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсаций выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления Кв. Он определяется соотношением среднего значения напряжения на выходе выпрямителя Uвых действующему значению фазного сетевого напряжения Uд. Для однополупериодной схемы Кв=0,45. Для сглаживания пульсаций на выходе такого выпрямителя требуются мощные фильтры.
Двухполупериодная схема со средней (нулевой) точкой требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины Кв до 0,9. Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого (силового) трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного импульсного источника.
Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсаций и Кв, что и схема со средней точкой, но не требует наличия сетевого трансформатора. Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов, как с точки зрения КПД, так и по стоимости.
Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uд=220В Uампл=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.
Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Iпр и максимального обратного напряжения Uобр.

3.2. ВЧП – ключевой элемент с импульсным трансформатором.
ВЧП представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧП приведены на рисунке.


Однотактная схема при минимальном количестве силовых элементов и простоте реализации имеет недостатки:
а) трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
б) для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.
Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.
Двухтактная схема со средней точкой трансформатора (push-pull) свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания.
Двухтактная полумостовая схема по параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечёт двухкратное увеличение количества конденсаторов.
Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

Двухтактная мостовая схема по параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

3.3. ШИМ-контроллер и обратная связь.
Сам по себе ключевой элемент, выполненный на полевых или биполярных транзисторах, не может выработать прямоугольные импульсы. Для этого он должен быть составным элементом автогенератора или управляться неким устройством, подающим на него такие импульсы.
Для более близкого знакомства с реализацией данной функции придётся рассмотреть более сложные (и более близкие к реальным) схемы.
Преобразование осуществляется с помощью мощного транзистора VT1, работающего в режиме ключа и импульсного трансформатораT1, вместе образующих схему ВЧП. Что касается схемного решения, то здесь возможны два варианта преобразователей.
Первый выполняется по схеме импульсного автогенератора. К примеру, такой использовался в ИБП телевизоров 3 – 4 УСЦТ), например:


Телевизор «Садко-61ТЦ-423Д» - единственный ретро-телевизор в моём музее, который использовался по прямому назначению, как демонстрационный монитор для компьютерного класса КУВТ-86 и для просмотра видео с кассетного видеомагнитофона «Электроника-ВМ12».


Фото ИБП для аналогичных телевизоров.

Второй
– с внешним управлением, используется в большинстве современных (и не очень) радиоэлектронных устройств, например:


Поскольку частота преобразователя обычно выбирается от 20 до 60 кГц, то размеры импульсного трансформатора, а, следовательно, и всего БП будут достаточно компактны, что является немаловажным фактором при создании современной аппаратуры.

Упрощенная схема импульсного преобразователя с внешним управлением приведена ниже:


Преобразователь выполнен на транзисторе VT1 и трансформаторе Т1. Сетевое напряжение через СФ подается на СВ, где оно выпрямляется, фильтруется конденсатором фильтра Сф и через обмотку W1 импульсного трансформатора Т1 подается на коллектор транзистора VT1. При подаче в цепь базы транзистора прямоугольного импульса, транзистор открывается и через него протекает нарастающий ток Iк. Этот же ток будет протекать и через обмотку W1 трансформатора Т1, что приведет к увеличению магнитного потока в сердечнике трансформатора и возникновению во вторичной обмотке W2 ЭДС индукции. В итоге на выходе диода VD появится положительное напряжение.
При этом, если увеличивать длительность импульса, приложенного к базе транзистора VT1, во вторичной цепи будет увеличиваться напряжение, т.к. энергии будет отдаваться больше, а если уменьшать длительность, соответственно напряжение будет уменьшаться. Таким образом, изменяя длительность импульса в цепи базы транзистора, можно изменять выходные напряжения вторичной обмотки Т1 и осуществлять, таким образом, стабилизацию выходных напряжений. Единственное, что для этого необходимо - схема, которая будет формировать импульсы запуска и управлять их длительность (широтой). В качестве такой схемы используется ШИМ-контроллер. Это, сам по себе довольно сложный элемент (в принципе, как и любая ИМС), в состав которого входят: задающий генератор импульсов (определяющий частоту работы преобразователя), схемы защиты, контроля и логическая схема, которая управляет длительностью импульса.

Пример формирования ШИМ-последовательностей:


Скважность импульсов определяется отношением периода колебаний к длительности импульса S=T/tимп. Кстати, об импульсах, скважности и т.п. см. мои статьи из цикла «Мультивибратор» в разделе РАДИОбиблиотека .
Для А: S=0,5;
для В: S<0,5;
для C: S>0,5.
Обращаю внимание, что во всех случаях период T=const, а, значит, и частота f=const.
Импульсы такого типа формируются на выходе ШИМ-контроллера и поступают на базу VT1.
Для стабилизации выходных напряжений ИБП, схема ШИМ-контроллера «должна знать» величину выходных напряжений. Для этих целей используется цепь обратной связи (или цепь слежения), выполненная на оптопаре U1 и резисторе R2. Увеличение напряжения во вторичной цепи трансформатора Т1 приведёт к увеличению интенсивности излучения светодиода, а, следовательно, уменьшению сопротивления перехода фототранзистора (они входят в состав оптопары U1). Это, в свою очередь, приведёт к увеличению падения напряжения на резисторе R2 (включен последовательно фототранзистору) и уменьшению напряжения на выводе 1 ШИМ-контроллера. Уменьшение напряжения заставляет логическую схему, входящую в состав ШИМ-контроллера, увеличивать длительность импульса (вариант С на диаграмме) до тех пор, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. При уменьшении напряжения – процесс обратный (вариант В на диаграмме).
В ИБП используются два принципа реализации обратной связи (цепей слежения) – «непосредственный» и «косвенный». Вышеописанный метод называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя.
При «косвенном» методе напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора:


Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ-контроллера.
Представим ситуацию, когда в нагрузке ИБП возникает КЗ. В этом случае вся энергия, отдаваемая во вторичную цепь ИБП, будет теряться и напряжение на выходе будет практически равно нулю. Соответственно схема ШИМ-контроллера будет пытаться увеличить длительность импульса для того, что бы поднять уровень этого напряжения до соответствующего значения. В итоге транзистор VT1 будет все дольше и дольше находиться в открытом состоянии, и через него будет увеличиваться протекающий ток. В конце концов, это приведет к выходу этого транзистора из строя. В ИБП предусмотрена защита транзистора преобразователя от перегрузок по току в таких нештатных ситуациях. Основу ее составляет резистор Rзащ, включенный последовательно в цепь, по которой протекает ток коллектора Iк. Увеличение тока Iк, протекающего через транзистор VT1, приведет к увеличению падения напряжения на этом резисторе, а, следовательно, напряжение, подаваемое на вывод 2 ШИМ контроллера также будет уменьшаться. Когда это напряжение снизится до определенного уровня, который соответствует максимально допустимому току транзистора, логическая схема ШИМ контроллера прекратит формирование импульсов и блок питания перейдет в режим защиты или, другими, словами отключится.

4. Схемы разных ИБП.
Без комментариев приведу несколько схем ИБП разной степени сложности и на разной элементной базе. При желании Вы легко сможете найти их в сети.

Этиэти схемы приведены «для тренировки», чтобы, рассматривая их, можно было найти основные элементы, присущие всем ИБП, независимо от конкретной, так сказать, реализации. Ну и сравнить схемные решения и элементную базу.

5. Реальный ИБП.
Однажды в моём компьютерном классе перестал работать коммутатор ЛВС «D-Link DES-1016D».
Как выяснилось, причина была в неисправности его ИБП, а точнее – в элементах питания ШИМ-контроллера.


Switch открыт.


Его ИБП должен выдавать на выходе 3,3В х 1,5А.


Его схема. Пришлось заменить конденсатор С3 в цепи питания ШИМ-контроллера. ИБП запустился, и Switch снова стал нормально работать.
Подробнее см. «Ремонт коммутатора D - LinkDES -1016 D » в разделе РАДИОмастерская .

6. ПростейшийИБП – своими руками.
Видео создания этого ИБП я сходу обнаружил на полутора десятках сайтов. И даже от двух разных авторов!


Надо полагать, это говорит о хорошей повторяемости конструкции («Делаем самый простой импульсный блок питания», 18 мин, на youtube.com). Автор подробно излагает весь процесс изготовления ИБП, рекомендации по подбору деталей, демонстрирует рабочий блок. Правда, терминология несколько… местами… не совсем. Но, в данном случае, это не принципиально.


Специалст назвал данное устройство не ИБП, а преобразователем. У него сразу возник вопрос: а как поддерживать стабильное напряжение на выходе?Значит ли это, что такой БП без обратной связии ШИМ-контроллера вовсе и не ИБП?

Спасибо за внимание, которое Вы уделили моему материалу.
В проекте разработка двух продолжений: изготовление ИБП в РАДИОмастерской и описание раритетных реальных ИБП в новом разделе РАДИОхабар , который я планирую открыть в скором времени.

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Практически в каждом электронном приборе есть блок питания – важный элемент монтажной схемы. Блоки применяются в устройствах, требующих пониженного питания. Базовой задачей блока питания считается уменьшение сетевого напряжения. Первые импульсные блоки питания сконструированы после изобретения катушки, которая работала с переменным током.

Применение трансформаторов дало толчок развития блоков питания. После выпрямителя тока осуществляется выравнивание напряжения. В блоках с преобразователем частоты этот процесс проходит по-другому.

В импульсном блоке основу составляет инверторная система. После выпрямления напряжения образуются прямоугольные импульсы с высокой частотой, подаются на фильтр выхода низкой частоты. Импульсные блоки питания преобразовывают напряжение, отдают мощность на нагрузку.

Рассеивание энергии от импульсного блока не происходит. От линейного источника идет рассеивание на полупроводниках (транзисторах). Его компактность и малый вес также дает превосходство над трансформаторными блоками при одинаковой мощности, поэтому часто заменяют импульсными.

Принцип действия

Работа ИБП простой конструкции следующая. Если входной ток является переменным, как в большинстве бытовых приборах, то сначала происходит преобразование напряжения в постоянное. Некоторые конструкции блоков имеют переключатели, удваивающие напряжение. Это делается для того, чтобы подключаться к сети с разным номиналом напряжения, например, 115 и 230 вольт.

Выпрямитель выравнивает переменное напряжение и на выходе отдает постоянный ток, который поступает в фильтр конденсаторов. Ток от выпрямителя выходит в виде малых импульсов высокой частоты. Сигналы обладают высокой энергией, за счет которой снижается коэффициент мощности трансформатора импульсов. Благодаря этому габариты импульсного блока небольшие.

Чтобы скорректировать уменьшение мощности в новых блоках питания применяют схему, в которой ток на входе получается в виде синуса. По такой схеме смонтированы блоки в компьютерах, видеокамерах и других устройствах. Импульсный блок работает от постоянного напряжения, проходящего через блок, не изменяясь. Такой блок называют обратноходовым. Если он служит для 115 В, для работы на постоянном напряжении необходимо уже 163 вольта, это рассчитывается как (115 × √2).

Для выпрямителя такая схема вредна, так как половина диодов не используется в работе, это вызывает перегрев рабочей части выпрямителя. Долговечность в этом случае снижается.

После выпрямления напряжения сети в действие вступает инвертор, который преобразовывает ток. Пройдя через коммутатор, имеющий большую энергию выхода, из постоянного получается переменный ток. С обмоткой трансформатора в несколько десятков витков и частотой сотни герц блок питания работает в качестве усилителя низкой частоты, она получается больше 20 кГц, она не доступна слуху человека. Коммутатор изготовлен на транзисторах с многоступенчатым сигналом. Такие транзисторы имеют низкое сопротивление, высокую возможность прохода токов.

Схема работы ИБП

В сетевых блоках вход и выход изолируют между собой, в импульсных блоках ток применяется для первичной обмотки высокой частоты. На вторичной обмотке трансформатор создает нужное напряжение.

Для напряжения выхода более 10 В применяют кремниевые диоды. На низких напряжениях ставят диоды Шоттки, которые имеют достоинства:
  • Быстрое восстановление, что дает возможность иметь малые потери.
  • Малое падение напряжения. Для снижения напряжения выхода применяют транзистор, в нем выпрямляется основная часть напряжения.
Схема импульсного блока минимального размера

В простой схеме ИБП вместо трансформатора применен дроссель. Это преобразователи для понижения или повышения напряжения, относятся к самому простому классу, применяется один переключатель и дроссель.

Некоторые виды ИБП

  • Простой ИБП на IR2153, распространен в России.
  • Импульсные блоки питания на TL494.
  • Импульсные блоки питания на UC3842.
  • Гибридного типа, из энергосберегающей лампы.
  • Для усилителя с повышенными данными.
  • Из электронного балласта.
  • Регулируемый ИБП, механическое устройство.
  • Для УМЗЧ, узкоспециализированный блок питания.
  • Мощный ИБП, имеет высокие характеристики.
  • На 200 В – на напряжение не более 220 вольт.
  • Сетевой ИБП на 150 ватт, только для сети.
  • Для 12 В – нормально работает при 12 вольтах.
  • Для 24 В – работает только на 24 вольта.
  • Мостовой – применена мостовая схема.
  • Для усилителя на лампах – характеристики для ламп.
  • Для светодиодов – высокая чувствительность.
  • Двухполярный ИБП, отличается качеством.
  • Обратноходовый, имеет повышенные напряжение и мощность.

Особенности

Простой ИБП может состоять из трансформаторов малых размеров, так как при повышении частоты эффективность трансформатора выше, требования к размерам сердечника меньше. Такой сердечник изготовлен из ферромагнитных сплавов, а для низкой частоты используется сталь.

Напряжение в блоке питания стабилизируется путем обратной связи отрицательной величины. Осуществляется поддержка напряжения выхода на одном уровне, не зависит от нагрузки и входных колебаний. Обратная связь создается разными методами. Если в блоке есть гальваническая развязка от сети, то применяется связь одной обмотки трансформатора на выходе или с помощью оптрона. Если развязка не нужна, то используют простой резистивный делитель. За счет этого напряжение выхода стабилизируется.

Особенности лабораторных блоков

Принцип действия осуществлен на активном преобразовании напряжения. Для удаления помех ставят фильтры в конце и начале цепи. Насыщение транзисторов положительно отражается на диодах, имеется регулировка напряжения. Встроенная защита блокирует короткие замыкания. Кабели питания применены немодульной серии, мощность достигает 500 ватт.

В корпусе установлен вентилятор охлаждения, скорость вентилятора регулируется. Наибольшая нагрузка блока составляет 23 ампера, сопротивление 3 Ом, наибольшая частота 5 герц.

Применение импульсных блоков

Сфера их использования постоянно растет как в быту, так и в промышленном производстве.

Импульсные блоки питания применяются в источниках бесперебойного питания, усилителях, приемниках, телевизорах, зарядных устройствах, для низковольтных линий освещения, компьютерной, медицинской технике и других различных приборах, и устройствах широкого назначения.

Достоинства и недостатки
ИБП имеет следующие преимущества и достоинства:
  • Небольшой вес.
  • Увеличенный КПД.
  • Небольшая стоимость.
  • Интервал напряжения питания шире.
  • Встроенные защитные блокировки.

Уменьшенная масса и размеры связано с применением элементов с радиаторами охлаждения линейного режима, импульсного регулирования вместо тяжелых трансформаторов. Емкость конденсаторов уменьшена за счет увеличения частоты. Схема выпрямления стала проще, самая простая схема – однополупериодная.

У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

Стоимость ИБП снижена из-за унификации элементов широкого ассортимента на роботизированных предприятиях. Силовые элементы из управляемых ключей состоят из полупроводников меньшей мощности.

Технологии импульсов дают возможность применять сеть питания с разной частотой, что расширяет применение блоков питания в различных сетях энергии. Модули на полупроводниках с небольшими габаритами с цифровой технологией имеют защиты от короткого замыкания и других аварий.

Недостатки

Импульсные блоки питания функционируют с помощью преобразования импульсов высокой частоты, создают помехи, уходящие в окружающую среду. Возникает необходимость подавления и борьбы с помехами разными методами. Иногда подавление помех не дает эффекта, и применение импульсных блоков становится невозможным для некоторых типов устройств.

Импульсные блоки питания не рекомендуется подключать как с низкой нагрузкой, так и с высокой. Если на выходе резко упадет ток ниже установленного предела, то запуск может оказаться невозможным, а питание будет с искажениями данных, которые не подходят к диапазону работ.